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Abstract. The information capacity in frequency dictionaries of nucleotide sequences is estimated
through the efficiency of reconstruction of a longer frequency dictionary from a short one. This
reconstruction is performed by the maximum entropy method. Real nucleotide sequences are
compared to random ones (with Lthe same composition of nucleotides). Phages genes from NCBI
bank were analyzed. The reliable difference of real genetic texts from random sequences is observed
for the dictionary length ¢ = 2, 5 and 6.

1. Introduction

Storage and processing of genetic informalion are the central problems of molec-
ular genelics and molecular biology. Nucleotide sequences play the key role in
these processes. Recent intense increase in the original genetic data for various
genes challenges theoretical biologists: whal terms and wethods should be used
to understand this vast experimental material [1 - 8]. Application of mathematical
methods for studying nucleotide sequences is a long-standing story (for review sec
[1-12]). :

At present, the variety of methods developed can be divided into two class-
es: methods involving context [3,4,7,10,11] and context-free [1,2,6, 12] analysis
of symbol {nucleotide, in particular) sequences. The coutext-involving methods
assume special biological knowledge and aim at the analysis of groups of nucleofide
sequences o obtain statistical characteristics as well as consideration of single
sequences Lo recognize functional sites, introns, exons etc. Being more abstract,
the context-free methods are assumed to avoid any invoivement of knowledge of
this sort; mainly, they take origin from the methodology of statistical physics. The
study of statistical properties of nucleotide sequences means a trausiliun from the
consideration of a specific nucleotide sequence to the consideration of ensembles
of their fragments [7,8,10,12]. Here we tried, within the framework of the second
approach, to deveiop a method for the evaluation of informaltion vapacity of the
dictionaries of nucleotide sequences. Basic issue of our methodology is the recon-
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struction of a set of longer fragments of a sequence from a given set of shorter ones.
‘T'his issue was used quite a time ago in linguistics by famous soviet mathematician
A. N, Kolmogorov [13], who put a problem of prediction of the next symbol in a
(linguistic} text. Similar problem arises in statistical physics [14, 15}, where the
behaviour of multi-particle system should be described by a distribution function
of a small number of particles {some promising resulta in that ficld are preaented
n [16]). Statistical physicists have elaborated a number of approximate methods,
some of which are recognized as very useful and powerful.

We coneider the problem of the reconstruction of the set of longer fragments
from the set of the fragments of the given length.

2. Reading Window and Frequency Dictionary

Here we present the methodology of investigating the DNA primary structure
as @ text. DNA or RNA nucleotide sequence is considered as a linear connected
sequence of symbols and is called genetic text (GT); the number N of symbols
in the text is called the length of GT. Recognition of structural units in GT is a
natural way to introduce a logical order over the increasing amount of GTs. Some
of these units are well known: codon, exon, intran, TATA hnx, signal sequences.
One might expect new structure units to be discovered.

The principles of recognizing these structural units often depend on the subject
of investigation. Probably, the most general principle is that these units differ in
function and/or history. Consistent realization of this principle encounters signif-
icant difficulties. Beside purely technical problems, there are substantial ones: the
meaning of specific GT regions which are presumed to be structural units depende
on their relative disposition, to a great extent.

It should be stressed that there is no intracellular process which deals with the
abundant, genetic informatinn stored in an entire nucleotide sequenca. To the con
trary, all known intracellular processes related to realization of genetic information
involve different fragments of DNA (or RNA) not greatly varying in length. The
information is read locally, by small portions and from small DNA regione, for
most (if not all) cases. During the information processing, the reading “device”
runs along the nucleotide sequence in small steps. Let us call such a device the
reading windamw. The essential formalized features of the reading window are the
size of the region being read and the space between the nearest regions. Let con-
sider here the simplest case, when 1) the read fragment is of a permanent length,
2) the reading window moves permanently in the same direction, and 3) the step
of the reading window motion is permanent and equals to one nucleotide. A site
of DNA (or RNA) read by the reading window of the length ¢ would be called «
word of the length g.
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The concept of reading window focuses the study of nucleotide sequences (texts)
on purely mathematical objects, namely Frequency Dictionaries (FD). Let us con-
sider GT of the length N and a reading window of the length ¢ located at an
end of GT (conventional “start”). Let us move the reading window consecutively
towards the opposite end, so that N — ¢ + 1 words of the length ¢ will be read.
Identical words can occur among these. The complete set of words encountered
in GT, accompanied by their frequencies is called the Frequency Dictionary (FD)
[17 - 20]. Further, we consider the dictionaries of various lengths, from one to some
specific length.

Obviously, a longer dictionary bears entire information about all shorter dic-
tionaries of the same GT. One can easily obtain a dictionary of shorter length
from a dictionary of a given length. One can unambiguously derive entire eymbol
sequence from the dictionary of some specific length d* + 1, where d* is defined as
the minimal length for which all the words in the dictionary occur uniquely. This
specific length can be easily calculated; d* is a rather informative characteristics
of real genes, it represents the redundancy of symbol sequences [17,19]. Since the
value of d* depends strongly on both the structure of a symbol sequence and its
lengtl, vue is to compare the values of d* observed in real genes with the values of
d* obtained for random sequences rather than between themselves. It results from
the following estimation of d* for random sequences: d* ~ logy N, [17]. Thus, the
value d*/log, N should be compared for the real genes. It was found that human
genes differ form the genes of human viruses with respect to this value; similarly,
this value is less for exons than for introns, for genes of eukaryotic organisms, and
decreases after the splicing of RNA [18].

We consider here the dictionaries of length shorter than 4*. This paper aims to
introduce a strict definition of information capacity of FDs of various lengths.

3. Dictionary Reconstruction. Maximum Entropy Method

Shorter dictionary can always be obtained from a given one by summation of
frequencies of the words; the inverse transitions, in general, impossible: a part of
information is lost due to summatinn. Thus, the transition from a given dictionary
to a longer one is ambiguous. This ambiguity can be decreased with the help of
additional knowledge, e.g. from a consideration of biclogical functions of words,
their interlocation in an eriginal gene, and so on. The prablem of longer dictionary
derivation from a given one is called the dictionary reconstruction.

We solve this problem by the maximum entropy method, which implies using the
information contained in the given dictionary enly, and aveiding an involvement
of any external knowledge, both explicit and implicit.

Let us reconstruct a longer dictionary from a given one so that the reconstructed
dictionary showse maximal indeterminacy. It means that ane must choose the dic-
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tionary with maximal entropy among all longer dictionaries which can be derived
from a given one. Entropy of a dictionary is defined in traditional way,

Sq = —’Z‘ f-il iy lnfh g (1)
11 . lq

where {; is a letter (symbol) from the text alphabet; ¢ ... ¢, represents a word
of length q. i; rans over the letters {A, C, G, T} in our case. fj .4, is the word
frequency The summation is performed here over all words encountered in the text.
In order to eliminate houndary effects, the text is closed into a circle. Maximal
possible entropy is max{S,} = —49(37) In(5) = ¢In(4), for the dictionary of the
length ¢

Let us consider the reconstruction of the dictionary one symbol longer than the
original one. This extremum problem is stated in the following way:

Sgt1 [fo+1] — max (2)
with the constraints
D Fa i = Jiie (2a)
ig+1
D7 fiomvis e = Firigs (2b)
it

following from the interrelation between these two dictionaries. Here Sy is the
entropy of the reconstructed dictionary of length (g+ 1) derived from the original
dictionary. The summation in (2a) and (2b} is performed over all possible 1,41
(recall that i, corresponds to {A, C, G, T}). The conditions (2a) and {2b) mean
that the reconstructed dictionary must not be an arbitrary one, but it must yield
the original shorter dictionary under summation.

Solution by the indeterminate Lagrange multiplier method gives

Jir o igigs: = BXP{ E Ty ig T ST Biigss — 1}: (3)
5] ... Ig

12 Tgt]

where &;, g and EI-E__J-QH are the indeterminate multipliers corresponding to
linear restrictions (2a) and (2b). Denoting

Qiy gy = EXD( Z &"2"-’%-1 - E)’

2 ...‘iq+1

EXP( Z 5{1 g — ;), (4)

Biy iy
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ard using the constraints (2a) and (2b), we obtain the solution of the problem (2)
as (here ¢ > 1)
Fiyighip i
f‘ii celglgtn — AR S BAAT L 4 (5)
fia i

where f;, ., are the frequencies of a dictionary one symbol shorter than the orig-
inal one, yielded by its summasion. For ¢ = 1 the solution is obvious: fi;, =
fil fig . ‘

A dictionary of length (g + s) is reconstructed from the original dictionary of
length ¢ in a similar way:

Sgts[fo+s] — max (6)
with the constraints

D7 Fitigigerigrs = fir iy

Tyhleatyte

D7 figmirigiass wiors = i (6a)

s eiges

N0 figprigreinig = Fivg

s e igs
The solution is:
— forg>1
f. o ' _ fz‘l A..iqfig celggl t fiq7$+l igte (7)
11 ... igt e tgds T
1 ata+1l at+ f‘iQ ngf;s gyl e f;‘q75+1 gt s—1 ’
— and for g =1
fi] cotgbs T f"il f"lﬁ'ﬁ . (8)

The expressions {7) for the reconstructed frequencies are analogous to Kirk-
wood’s approximation [14,16], but unlike the latter, are exact solutions. The
approach developed here to study the statistical properties of nucleotide sequence
comes from statistical physics [15], where it is implemented to study multi-particle
distribution functions. The problem of derivation of three-particle distribution
functions from two-particle ones has been solved in [16]; we will not discuss the
relation between Kirkwood’s approximation in statistical physics and the solu-
tion of diclivuary reconstruction any more here. The above approach to studying
nucleotide sequence is a new step towards the idea of Schridinger to consider life
as an aperiodic crystal (ordered structure).
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4. Entropy, Limit Entropy, Informativity and Dictionary
Reconstruction Quality

The entropy .S, of a dictionary represents the indeterminacy of an occurrence a
word of length ¢ at an arbitrary location in a nucleotide sequence. If ¢ < d*, then
the reconstructed dictionary is less determined than the real dictionary of this
length. Let S; () be the entropy of a dictionary of the length 7 reconstructed from
a given dictionary of the length j (¢ > 7). Formulae (1), {7) and (8) yield

S0y = =3+ 18 -(E-7)S-,  J>1, (9)
Si(1) =8, j=1. (10

The entropies 5; steadily increase with the dictionary length ¢ (obviously, up
to d*, when the entropy becomes constant}, while the entropies S;(j) steadily
decrease as j grows from 1 to .

It should be stressed that the largest jump of the value S; (j) is observed at the
dictionary lengths j = 6, 7, and 8. We have examined all the nucleotide sequences
in NCDI-bank, and maximal .9; (7) jump was always observed at these lengths. To
male this effect clearer, let us introduce the notion of informativity. The maximal
possible entropy for a dictionary of length ¢ is

2l 1
. PR L _ I .
max{S;} = —4 (41.) In (43.) = iln(4);
4% is the maximal possible number of words in a dictionary of length i. Then the
informativity is characterized as

I, = max{5}—-S5; = iln{4)-S;. {11)

Zero informativity corresponds to a dictionary with complete set of words of
equal frequencies. As opposed to the entropy, this characteristic is a measure of
deviation from disorder. Zero informativity corresponds to complete indetermi-
nacy, “chaos”, rather than to the absence of information. The value [; can be
considered as the “distance from chaos”.

Using I;, one can compare dictionaries of equal lengths of different sequences
with respect to their indeterminacy. In order to compare dictionaries of different
lengths, we introduce the notion of limit specific entropy. Reconstruct a dictionary
of length n from a given one of smaller length j and consider the limit S, (f) /n
as n — 00. It corresponds to the well-known thermodynamic limit in statistical
physics.

o Seli) . (em it 1S (n=g)Si

=300 mn n—+0C n

= Sj; T o)1 (12)
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For the dictionary of length 7 =1 we have

S {1) = nSy, lm 2 W St. (13)

=00 ke

This is the specific entropy (entropy per symbol} in a dictionary of infinitely
long words reconstructed from a given dictionary.

Further on we omit the word “specific”, since we do not mean the true limit
{infinite) entropy. It is convenient to measure the limit entropy in portions of
the unit dictionary with equal letter frequencies because, firstly, it is the greatest
possible limit entropy value and, secandly, it eliminates the dependence on entropy
units (bits, dits, etc.). Since max {S;) = In4, let us define the limit entropy as

N 8= 50 .
SDO (J) - 1114 1 J > 11 {14)
S .
Seo (1) = lnilft’ j=1. (15)

It varies from zero (complete determinacy) to one {complete indeterminacy).

Limit entropy is an essential characteristic of dictionaries. It shows that the
information in a dictionary increases as the length of the latter grows. Besides,
the entropy difference between two dictionaries of two consecutive lengths yields
the information gain of the longer dictionary. In most cases, the smallest limit
entropy difference is observed between the dictionaries of lengths 2 and 3, which
shows little difference in their information capacity, This means that although the
information in nucleotide sequences is encoded with triplets (codons), a significant
part thereof is stored in doublets, which brings into connection the degeneracy of
genetic code. This fact seems to be of general nature.

Similarly, we introduce limit specific informativity for a dictionary of length i
{we omit the word “specific” below) by

Io (i) = 1= 585,1{1), (16)
and for a dictionary of length ¢ reconstructed from a dictionary of length j by
LG) = max($) - 8 () = il (@)~ 8:0) (7)

The cumparison of dictionaries in terms of informativity differs from that in
terms of entropy. Two dictionaries with the same entropy but of different lengths
have different informativities (the informativity is higher for the longer dictionary}.
Equal entropies indicate similar indeterminacy of choosing a word of a given length
in an arbitrary text site, while unequal informativities indicate that the longer
dictionary is more exotic. Indeed, similar experimental outcomes for the longer
dictionary should be less [requent, since the number of possible word sets is higher.
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Hence, informativity pertains to the relationship between the whole dictionary
and the set of possible dictionaries of the same length rather than to a particular
experiinent.

Let compare informativities of the real and reconstructed dictionaries. We call
Q; (7) the quality of reconstruction of a dictionary of length i from dictionary of
length j < i,

L) max(Si)—S:i{)
L‘ o max (Sl) - Si

Since S;(j) > Si, the quality of reconstruction varies within 0 < @, (4) < 1,
where the value | corresponds to the case S; () = 5,. The procedure of dictionary
reconstruction takes into account all possible extensions of a word, so that the
resulting dictionary contains all the words from the real dictionary and, probably,
some extra ones, while the frequencies may differ, That is why Q; (§) = 1 for
the case of exact reconstruction, while deviation from unity reveals the differernce
between the real and reconstructed dictionaries.

Qi (j) = (18)

5. Comparison of Real ve, Random Texts

Random noncorrelated sequence is the first and most convenient model of a real
genctic text. Let us call & randem ezt corresponding to a given real text a text of
the same length with the same proportions of nucleotide compeosition. This random
text is constructed by the method of random choice of elements (“urn model™}.

We have considered a number of texts of nucleotide sequences from NCBI server.
The dictionaries of lengths from 1 to 10 were constructed for each text and the
limit entropies and the quality of reconstruction were calculated. 100 random texts
have boen implemented for each real sequence, and the average values and standard
deviations of those entities were calculated. In general, the patterns seem to be
rather similar for sequences of different organisms. Typical values for the quality
of rcconstruction are shown in Fig. 1. The differences between limit entropies of
the dictionaries of random and real sequences are shown in Fig. 2. '

It is peculiar that the dictionary of length 2 is badly reconstructed from the unit
dictionary for real nucleotide sequences, while (25 (2) is similar for real and random
texts. It means that the dictionary of real texts of length 2 contains an essential
part of information about the dictionary of length 3. The dictionaries of lengths
5 and 6 reconstructed from dictionaries shorter by one symbol are better for real
sequences in comparison to the random ones. To demonstrate the generality of
these effects and to observe entire picture, we have analyzed over 1000 phages
genes. The results of calculation of the quality of reconstruction for this group of
genes are shown in Fig. 3.

Ore can see that clearly distinguishable peculiarities are observed only for the
texts long enough, as a rule of more than 500 nucleotides. The effect of finiteness
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Fig. 1. Examples of the dependence of reconstruction guality for a dicticnary of length ¢ + 1
derived from a dictionary of length ¢; the length of the reconstructed dictionary is represented
on the horizontal axis. a) a sequence from chicken genome, N = 2136; b) a sequence from human
genome, N = 1639; ¢} a sequence from nematoda genome, NV = 26139, Dashed line connects the
quality of reconstruction for real sequences, while solid line connects that for random noncorrelated
sequences of the same nucleotide composition. Standard deviations are shown.

shows up for shorter texts. In Fig. 4, the differences of random and real limit
entropies are shown only for the phages genes with N > 500.

8. Discussion

This paper presents the results of the exploration of the problem of determination
of information content in nucleotide sequences. These rosulte are of twn kinds:
firstly, methodological, and secondly, concerning the properties of some particular
groups of sequences studied.

The reculte of mothodological value are the following. An explicit formula for
the reconstruction of longer dictionaries from the shorter ones is obtained; this
formula has maximal generality and does not require {explicitly or implicitly) any
epecial aseumptions on the properties of original nucleotide sequences, ar their
models. Kolmogorov used these special formulae in his linguistic studies, without
any detailed discussion of their validity. Our formula implies all known approx-
imate methods of statistical investigation of nucleotide sequences based on their
modelling by Markov chains of various order.

The information content per single symbol (letter, nucleotide) is estimated;
these estimations are obtained for very long (in the limit, infinitely long) symbolic
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Fig. 2. The difference between limit specific entropies of a random noncorrelated sequence and
a real genetic text. To visualise the pattern, the points are connected. The length of dictionary
is plotted on the horizontal axis. a) a sequence from chicken genome, N = 2136; b) a sequence
from human genome, N = 163%; c) a sequence from ncmatoda genome, N = 26139. Standard
deviations are shown.

sequences which were reconstructed from a given dictionary. This entity is related
the redundancy estimations introduced in Kolmogorov’s works. The primilive vari-
ants of the redundancy estimations for modelling sequences dealing with one-letter
dictionaries were introduced and discussed in detail in [18]. These estimations were
based on the modelling of GT by random non-correlated chains.

The approach presented above is illustrated with calculations performed on
a number various real genes. The results of analysis of all the phage sequences
ohtained from NCBI databank (release 94) are described below. The comparison
of real and random genetic texts shows that:

the dictionaries of length two of real and random sequences possess signifi-
cantly different information capacity;

the dictionary of length two of a real genetic text bears significantly more
information about the whole text in comparison to the dictionaries of length
two of random texts;

the increase of information content in dictionaries of length three when com-
pared to the dictionaries of length two is visibly smaller for real texts than for
random ones;

the dictionary of length eight bears over 90% of total information about genet-

ic text.
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The difference between reconstruction qualities of random sequences and real genetic
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Fig. 4. The difference betwecen limit specific entropies of random noncorrelated sequences and
real genelic Lexts of phage genes lenger than 500 nucleotides. The length of dictionary is plotted
on the horizontal axis. Standard deviations are not shown.

7. Conclusions

The basic idea is to determine the quality of reconstruction of & longer FD from
a given one. Generally, such reconstruction is ambiguous. Similar situations occur
in statistical physics, and the general approach is to extend the consideration of
a single ohject 1o the consideration of sets of such objects {ensembles). The main
idea of the method proposed is as following: when unambiguous reconstruction
of longer FD is impossible, one should reconstruct a set of all possible 1'Ds (i.e.,
the ensemble) from the original one. The entropy of the ensemble reveals the
reconstruction accuracy {(and hence the information value).

The problem of GT reconstruction could be promoted by the reconstruction of
FDs in general, it is always a matter of probability. One can estimate precisely
the indeterminacy for such a reconstruction. This indeterminacy decreases as the
length g of fragments (words) used for the reconstruction increases. The varia-
tion in indeterminacy of this reconstruction is an exact measure of information
content of a given FD. Besides the probabilistic origin of the approach devel-
oped to define information capacity of genes, one should bear in mind that the
information capacity measured throngh the quality of reconstruction can only be
determined relatively. [t means that one can calculate the capacity of two {or sev-
eral) genes comparatively, while no absolute scale of information capacily can be
introduced.



Analysis of Genetic Text 277

It should be stressed that the estimation of information capacity is neutral to
the context of the sequence studied. This implies in the notion of information, and
any deviation from i must be carefully justified.

In conclusion, we outline an important problem which may be treated by the
above method, It is the problem of the determination of microstructure of a gene.
(i.e. a distingnishing homogeneous regions different in their information charac-
teristics). Exons and introns are, probably, the first candidates for such regions.
Introns are recognized with the help of syntax and semantic features of GT. One
may assnme that cading and noncoding DNA regions can be reliably distinguished
exclusively due to their statistical properties. Moreover, one can expect to discover
new structures of genes determined by the statistical properties of their nucleotide
sequences anly; that is the microstructure of genes.
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