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Abstract-A function similar to Lyapunov’s function has been constructed for reactions with aAi -D xfljAj 
stages. This provides for the quasi-thermodynamics of the appropriate kinetic model, which implies steady- 
state uniqueness and global stability in the reaction polyhedron. The kinetic law generalizing the Marcelin4e 
Donder kinetics has been written for a separate stage. Explicit Lyapunov thermodynamic functions have 
been written for various conditions of the reaction proceeding in closed systems. The matrix of linear 
approximation close to equilibrium is expressed by means of the introduced scalar product. Particularly, the 
absence of damped oscillations as equilibrium is approached as shown. 

INTRODUCTION 

The equilibrium point in detailed balanced systems is 
known to be unique and stable (by the given values of 
linear conservation laws) (Zel’dovich, 1938; Shapiro 
and Shapley, 1965; Wei, 1962; Wei and Prater, 1962; 
Vasil’ev et al., 1973; Vol’pert and Khudyaev, 1985; 
Gorban’, 1980, 1984; Gorban’ et al., 1980; Yablonskii 
et al., 1983). Another example of the above systems are 
complex-balanced systems (Horn, 1972; Horn and 
Jackson, 1972; Feinberg, 1972b; Feinberg and Horn, 
1974; Orlov, 1980; Orlov and Rozonoer, 1980), such as 
complex reactions proceeding via a linear mechanism, 
i.e. monomolecular reaction systems (Wei and Prater, 
1962). 

There is another type of reaction mechanism with 
“quasi-thermodynamics”, i.e. with a unique and 
asymptotically stable steady state at given values of the 
conservation laws. These are reactions in which va- 
rious substances do not interact with each other. The 
uniqueness and stability of the steady state in these 
reactions were proved by Bykov et al. (1975), Slin’ko et 
ul. (1976) and Vol’pert et al. (1975). Isolated mechan- 
isms are defined as the totality of elementary reactions 
of the type 

n 
ctAi - 2 PjAj 

j=l 
(1) 

where A,, AZ, . . , A, are symbols of the substances, o! 
and fli are stoichiometric coefficients (integers, CL > 0, 
pj L 0,j = 1,2, , n), and n is the number of reagents. 
There is one initial substance in each elementary 
reaction (l), though a > 1 is also possible. Linear 
reaction mechanisms are typical examples of this type 
of reaction. However, nonlinear reaction mechanisms 
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without interaction of the various substances are also 
of common occurrence; for example, transformation 
of intermediates via the Eley-Rideal mechanism 
(impact) of CO oxidation on Pt: 

2Pt=2Pto; PtO=Pt(+CO,f). (2) 

Kinetic models corresponding to type (2) mechan- 
ism are non-linear ones. However, in this case the 
steady state is still unique and stable. 

Systems without interaction of the various sub- 
stances are not obligatorily complex-balanced. In turn, 
complex-balanced systems may consist of the steps of 
intermediate interactions. An example is the Twigg 
mechanism (Twigg, 1950) of ethylene hydrogenation 
on nickel: 

2Ni z+ CzH4 .2Ni 

CzH6 q\ J/’ (3) 

C2HsNi + NiH 

According to the criteria suggested by Horn (1972), 
Horn and Jackson (1972) and Feinberg (1972b), system 
(3) is always complex-balanced. 

For detailed and complex-balanced systems global 
Lyapunov functions exist. These functions are de- 
termined in the whole reaction polyhedron. The latter 
is given for the non-negative concentration condition 
and linear laws of conservation [for a detailed analysis 
of the structure, see Gorban’ (1984)]. 

The aim of this work was to find Lyapunov’s 
functions for systems without interactions between the 
various substances, and to investigate the dynamics of 
such systems both in steady and unsteady-state ex- 
ternal conditions. Besides, based on the kinetic law of 
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individual steps and generalization of Marcelinde 
Donder kinetics, thermodynamic Lyapunov’s func- 
tions have been written in their explicit form for closed 
systems in various conditions. The absence of damped 
oscillations in the linear equilibrium area is dem- 
onstrated by the introduced scalar product. 

LYAPUNOV’S FUNCTION. UNGROWT’H 

Let the reaction mechanism be 

a,rA, + . . + asnA, -Bs, A,+ + &,,A,> 

s=l,...,S (4) 

where s is an elementary reaction number and CL,~ and 
/Isi are non-negative integers (stoichiometric numbers). 
The direct and reverse reactions in eq. (4) are written 
separately. Let us denote the concentration of Ai (in 
mol/m3 for homogeneous reactions and in mol/m’ for 
heterogeneous reactions) by cir and the concentration 
vector by c. 

Suppose that the reaction proceeds in isothermal 
conditions. Reactions proceeding in unsteady-state 
conditions (including non-isothermic external ones) 
will be considered below. It should be noted that in 
nonisothermal conditions critical phenomena may be 
observed even for linear reactions (Vaganov et al., 
1978). Let us correlate each reaction (4) with its rate 
W,(c) > 0, which is a non-negative function of the 
concentrations. 

The main assumption is that for a type (1) reaction, 
W(c) = W(c,) is a smooth, monotonically growing 
function of ci, W(0) = 0. This is valid, for example, 
when the rate of reaction (1) is calculated by the law of 
mass (surface) action: W(c) = kc:, where k is the rate 
constant. 

Let A,, , A, be surface substances for heteroge- 
neous catalytic reactions; (4) is the transformation 
mechanism. Assuming the composition of‘ the gas 
phase to be constant, we may write down 

& = c ‘is, w,(c) (5) 
s 

or in vector form 

82 = c Y. w, (c) (6) 
s 

where y,, = /I,, - a,,, ys is a vector with components and 
ysi is a stoichiometric vector of the s-th reaction. The 
same kinetic equations [ (5) and (6)] may also be 
written for heterogeneous reactions proceeding at a 
constant volume. The results below are valid for this 
case as well. 

At least one positive linear law of conservation 
should exist for eqs (5) and (6). It is possible to find a set 
of numbers mi > 0 (i = 1, . . . , n) such that for any s 

xmi ysi = 0 and 2 mici = constant. 
i 

The numbers m, may be proportional to the molecular 
weights of the reagents Ai. In our case, it seems more 
convenient to use new variables ai = mici; then eq. (5) 

may be rewritten as 

Lii = rni c ysi w,. (7) 

Using gsi = mi yFi (gs is a vector with components g,J, 
we may represent eq. (7) as 

hi = c gsi w, 
s 

(7a) 

or in vector form as 

ri = cg,w3_ (7b) 

It should be borne in mind that in eqs (7a) and (7b) 

C gsi = 0 and C ai = constant. 
s 

Suppose that all reactions (4) have the form (1) i.e. 
the s-th elementary reaction is 

a,AiZ 4 C BsiA<. (8) 

Now, let us consider the Jacobian matrix correspond- 
ing to eq. (7): 

&ii 
J(a) = aa . ( > , 

(9) 

It can be shown that for any positive a (all ai 2 0) 
diagonal elements of the J matrix are negative (&&/dai 
< 0), non-diagonal elements J are positive (dcii/dai 
2 0, if i # j) and the sum of the elements is zero in any 

column $ &$/daj = 0 _ Actually, 
i=l > 

aw, 
J(n) = 2 = C gsiaa_S,d dzf 2 J,(U) (10) 

1 .i r, s 

where 

s,, = f ’ 
ifi,=j 

0, if i, # j. 

Matrix J,(a) in eq. (10) is the product of a positive 
scalar iTW,/&z, and the constant matrix Jz 

tJFhj = Ssi sa,J (11) 

In matrix J,9 whose elements are determined in eq. (1 l), 
only the column i, differs from zero. It is the same as 
vector column g5. The components of the latter, gsi 2 0, 

if i # i,, 1 gsi = 0; the diagonal component gs,, < 0. 

These facts f-allow from the above-mentioned prop- 
erties of matrix J(a). 

Thus, for each positive matrix J(a) represents an 
infinitesimal matrix of a certain Markovian process 
(Dynkin, 1959; Kemeney and Snell, 1960). This 
analogy will be widely used below. 

Let a(t ) be an arbitrary positive solution of eq. (7). 
Upon linearizing eq. (7) in the neighbourhood of a(r ), 
we consider solutions a(t ) -+ A(t ) close to a(t ), with the 

same value of the conservation law 
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where, as in eq. (4), U,~ and psi are stoichiometric In the linear approximation 

(12) 

It is well known from the theory of Markov processes 
that for equations of type (12) there exists a function, 
ungrowing along solutions 

(13) 

In eq. (13) z(A) is the sum of absolute values of Ai. 
Function 2(A) does not grow along solutions (12) if 

matrix J(a(t )) depends smoothly on r and has the 
above formulated properties: diagonal members are 
negative, non-diagonal members are positive, and the 
sum of the elements in each column equals zero. 

Function -Y(A) is a norm in R”: _Y(crA) = jorl_P(A), 
=Y(Ar + A2) < p(A,) + g(A,), p(A) = 0 only for A 
= 0. From this we conclude that for any two positive 
solutions d’)(r) and a”‘(, ), of system (7) for the 

condition i $ uf’) = ,$ a~‘), function p(a”‘(t) 

-a”‘(t)) doesrnot in&E&e with time because 44(A) 
does not grow along solutions (12). 

The role of function 

= $, miIc~“--cj2)I (14) 

determined in eq. (13) for the dynamics of systems 
without interaction of the various substances is the 
same as that of Lyapunov’s thermodynamic functions 
in the dynamics of closed systems. ~(urir - ur2)) is the 
function determined by two points a”) and u(~). One 
may, however, choose a stable point of eq. (7) as a”’ 
and consider _Y(a”’ - a(‘)) as function a(‘). It should be 
noted that as _Y is not differentiated everywhere, the 
obtained function dP(n’” - at2)) (u(‘) is a stable point) 
cannot be strictly regarded as Lyapunov’s function for 
system (7) (see, for example, Tikhonov et al., 1980). In 
practice, this difference is of no significance, only the 
monotony of the variation of 2 with time and the 
convexity of _Y being important. Below we separate 
the cases when ~(Q~~‘(c) - aq2’(t)) - 0 at t -+ m for 

any a (I) and a(‘) with the same condition 
( 

$, cl” (r) 

= i $, #)(t ) = constant), and consider Lyapunov’s 

thermodynamic functions for closed systems in terms 
of the generalized Marcelinde Donder kinetics (Van 
Rysselberghe, 1958; Feinberg, 1972a). 

LYAPUNOV’S THERMODYNAMIC FUNCTIONS 

Let us consider again the general scheme 

asiAi+. . .+a,,A,sfl,rAi+ . . +P,,A,, 

s=l,...,S 

numbers, s is the stage number and A,, . . . , A, are 
symbols of the substances. 

N, , . , N, (the amounts of substances Al, . . , 
A,) are the main variables that characterize the state of 
a mixture in the given fixed conditions. The rest 
variables may be expressed by vector N (the elements 
of which are Ni) and by values which are constant in 
these conditions. 

The rate W,corresponds to each (s-th) step. The rate 
of step W, is a value which is defined as a function of 
concentration and temperature W,(c, T). The follow- 
ing way of determining W,(c, T) permits one to 
generalize the approach suggested by Van 
Rysselberghe (1958) and Feinberg (1972a) and to 
describe both ideal and nonideal systems in different 
conditions (isothermal or adiabatic, isochoric or iso- 
baric, etc.). Catalytic systems of nonideal kinetics are 
considered by Zyskin et al. (1981a, b). 

Let n functions, p,(c, T), , p,(c, T), be pre- 
scribed. They are determined and smooth at T > 0 and 
all positive c (if all ci > 0). Feinberg (1972a) calls them 
pseudo-chemical potentials. In all familiar cases, 
/.+(c, T) is the chemical potential of substance Ai 
divided by RT. 

We assume that 

wa(c, T) = w,“(c, T) (exp C msi p’i - exp T Psi vi) 
I 

(15) 
where W%(c, T) is a certain positive function (arbitrary 
in other respects). 

Let us write the kinetic equation 

fi = VI y,W,(c, T) 

where Vis the system volume and ys is the stoichiomet- 
ric vector of the s-th stage: ysi = /Isi- C(,r_ 

In general. the equations describing the concen- 
tration dynamics are more cumbersome than eqs (16). 
At the given reaction conditions the concentration 
vector c and temperature T may be expressed through 
the composition N and constants characteristic of 
these conditions. Equations (16) become closed. Let 
the conditions be fixed and functions c(N, .), 
T(N, . .), pi(N, .) be determined. Here, the dots 
stand for constants which are different for different 
conditions. Thus, for example, for an isochoric, adia- 
batic process the inner energy U (which also includes 
chemical energy) and volume V should be inserted 
instead of the dots. Functions pi(N, .) should satisfy 
the following requirements (if Ni > 0, T(N, . . .) > 0): 

(1) Symmetry: 

api dpcj ~-~ 
r?N, - dN; (17) 

(2) Positive determinancy: 
(a) The quadric form 

is non-negatively determined in R”. 

(18) 
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(b) Quadric form (18) is positively (strictly (3”) V, U = constant (the system is heat- 
positively) determined in any hyperplane of insulated): 
positive, normal v (all vi > 0). 

When conditions (1) and (2) are fulfilled, a convex 
Lyapunov’s function G(N, _ .) is used for eqs (16). 

G= k N,(ln(Ni/V)+~,-1)-2(InT+l) 
i=l 

Function G(N, . . .) is determined from the expression (23) 
with an accuracy of constant where 

(19) C, = 2 Cvi Ni, C,. 
i=l 

According to condition (2b), G is strictly convex in (4) P, H = constant (H is the enthalpy, the 
the limitation to any hyperplane of positive normal. system is heat-insulated): 

Taking eqs (16) into account 

(20) 

where W,+ and W; are the rates of the direct and the 
reverse reaction of the s-th step: 

-2 (In T-t 1) (24) 

W;’ = W: (c, T) exp 5 tlsi pi (c. T) 
where 

i=1 
C,= i (&+R)N:, T= H- 2 

W; = W:(G T) exP 2 psi pi (c. T). 

uiNi C,. i= I ,=1 >i 
i=1 The above formulae, (22)-(24), can easily be general- 

As follows from eq. (20), G = 0 provided that W, = 0 ized for variable specific partial heat capacities, for 
for all s = 1, 2, . . _, s. This is the principle of the more complete equations of state, and for non-ideal 
detailed equilibrium. kinetics of V, T# constant. 

The validity of (1) and (2) in various conditions will Formula (15) is a general form of the kinetic law 
limit the possible form of function ,u,_ For example, let which is in agreement with thermodynamics [another 
us consider the reaction in an ideal classical gas. The general form is given by Orlov (1980) and Orlov and 
equation of state is Rozonoer (1980)]. 

It should be noted that the linear approximation to 

PV=RT i N, (21) 
eqs (16), close to equilibrium (Gorban’, 1979; Bykov 

i=l et al., 1979a, b), may easily be written using the quadric 

where P is the gas pressure. form (18). 

Suppose that at constant volume and temperature Let us introduce a scalar product into 

the kinetics obey the law of mass action. Based on the 
validity of limitation (l), we obtain <xly>= i: Xi& (25) 

i= 1 I 

pi(c, T) = hci+~~-~InT+6, (22) Denote a certain equilibrium composition by N*, the 
corresponding concentrations by CT, the temperature 

where ui (in J/mol) is the energy of the normal state of by 7”‘ and the volume by Y*. From eq. (20), N = 0 only 
A,, C,, (in J/mol degree) is the specific partial heat in those positive points where W, = 0 for all s (the 
capacity and ai is an arbitrary constant. detailed equilibrium principle). 

Thus, functions cri(C, T) are determined with an The linear approximation of W, close to equilibrium 
accuracy of the constants. The numbers 6, depend on is 
the system and are associated with the equilibrium 

compositions, for which c ysi pi = 0. 
W, = - W:(c*, T*) 

[ 
exp C asi Pi (C*, T*) 1 

Let us write down functions G for various 
conditions. 

x C y,i=j$ (N,-NY). (26) 
i, j J 

(1”) V, T = constant, G = g Ni (pi- 1). Denote 
i=1 

(2O) P, T = constant, G = 5 Nj pi. 
W,* 2’ Wz(c*, F) exp C a,, pi (c*, P) 

i=1 

In (1”) and (2”), functions G are found to be = Wso(C*, T*) exp C p*i JLi(C*p P). (27) 
proportional to the classical thermodynamic poten- 
tials of Helmholtz (free energy) and Gibbs (free W,* is the equilibrium exchange rate in the s-th stage. 
enthalpy). One may observe these values (their linear combi- 
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nations) in experiments on isotope exchange (Gorban’ Bsi # 0. If both asi # 0 and & # 0, the top substance 
and Yablonskii, 1981). Using the scalar product (25), and top reaction are connected with the opposite 
formula (26) is reduced to oriented arrows. A number, corresponding to the 

W, = -W.* <y*(N-NN* >. (28) 
stoichiometric coefficient asi or & is indicated by the 
figures above the arrow. 

Equation (16) in the linear approximation is For the impact mechanism of CO oxidation the two- 
fraction graph of intermediates transformations on Pt 

ti= -v*~WS*y,<yJIN-N*>~fK(N-NN*). (2) is as follows: 
S 

(29) Pt &m 

It is convenient to write the matrix of linear approxi- 
mation K using bracket designations: 

X 
(32) 

K= -v*cW,*Iy,><y,l. 
S 

(30) Pto-1 

As can be seen from eq. (30), K is self-conjugated The graph is oriented and bound if one may pass 

about the scalar product (25). Matrix K is non- from one top to another by arrows. Graph (32) is 

positively determined in the limitation on invariant proved to be oriented and bound. 

subspace, which is a linear shell of vectors ys(s Let us formulate the condition for the decrease of 

= 1, . , S). Hence, damped vibrations are impossible function %Q”‘(t ) -a(‘) (t )). 

in the neighbourhood of the equilibrium, and point N* Let there be no stages of interaction of the various 

is a stable “knot” in the invariant linear manifold substances in the reaction mechanism, and let the 

(reaction polyhedron). graph of the latter be oriented and bound. Let a(l) (t ), 

The general properties of the dynamics of system 
(16) with the kinetic law (15) are found to be the same 

a”’ (t) be the solution of kinetic eqs (7) and t &) 
i=l 

as those proved by Feinberg (1972a), Bykov ef al. 
(1979a) and Akramov et al. (1975) for Marcelin-de 

= 5 al”‘. Then 
i=l 

Donder kinetics. 
9(cP(t)-d*) (t))zf 5 l&)(t)--a!_‘)(t)1 +O 

LYAPUNOV’S FUNCTIONS. DECREASE i-1 

Let us consider again the systems without interac- att-+oo. (33) 
tion of various substances. As shown above, function 
IR(a(‘) (t) - a”) (t )) does not increase with time for any Hence, function T(a{‘) - a(‘)) decreases for the reac- 

two solutions, a(‘) (t ) and a(‘)(,), of system (7) with the 
tion whose mechanism graph is orientally bound. 

This may be proved as follows. For any t >, 0, t > 0 
same values of the conservation law and a0 = 5 ai, shift operator F (t + 7, t ) : A(t ) -+ 

=k 
i= 1 

#). Let us assume that A(t + 7) for eq. (12) is positive (all elementsJj of matrix 
i =1 F are above zero) and stochastic (the sum of the 

dWJdci, > 0, ifc, > 0. (31) elements in any column is 1) due to the oriented bond. 

A sufficient condition is P(a(‘)(t) - #)(t)) --, 0 at 
Furthermore, such E = E (z, a”) > 0 exists that for any t, 

t - 03. It implies that in the initial period (t = 0) some 
fij(t+rvt) >E > f. Hence, I\A(t+T)(I < (l-s)lJA(t)((, 

substance from Al, . . _, A. is in the mixture, whereas where 11 A 11 = 1 1 Ail. From this equation the re- 
at t > 0 all the substances are present (ci(t ) > 0 at t i=1 

> 0). In other words, any substance Ai produces any quired statement may easily be obtained. All of the 

other Ai during the reaction. Such a transformation of above is also valid for systems without interaction of 

Ai to Aj seems to result from the successive occurrence 
the various substances in unsteady states. Let the 

of several elementary reactions. external conditions (temperature, pressure, etc.) be 

Let us give a strict formulation. The reaction variable. Then for a type (8) reaction, W, = W, (ci,, t ). 

mechanism under consideration will be compared with Let condition (31) be uniformly fulfilled with respect 

a two-fraction graph (Vol’pert, 1972; Clark, 1980) 
to t: 

having two types of tops. The first type corresponds to aw, 
substances, the second one to elementary reactions. __ > 6(cJ 2= 0, 

acis 
if ciZ > 0 (34) 

Only the tops of the different types are connected by 
edges. The top substance Ai is connected to the top where 6(cJ is independent of t. 
reaction by an edge. Let us assume the reaction mechanism graph to be 

asiAI+ . . . +%A, +&Al + . . . + AA, 
orientally bound. Let d’)(t), a(*)(t) be solutions of 
kinetic eqs (7) into which W, = W, (c, t ) is substituted. 

if hi # 0 or &, # 0. The edge is oriented from the top .^ 
substance to the top reaction ifac,, # 0, and vice versa if 

If 5 a(l) (0) = $ a@)(O), then eq. (33) is valid. Thus, 
. I = I ._. a-1 
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even in external conditions, initial conditions are Acknowledyement-The authors are grateful to Michel G. 
“forgotten” for systems without interaction of the Sadovsky for valuable comments and useful criticism. 
various substances, except for the conservation law 

value: “$, ai = 2 -. . a,(t) Note that for systems 
i= 1 

without interaction of the various substances there 
exists a single (with an accuracy of proportionality) 
linear law of conservation, provided that the reaction 
mechanism graph is oriented and bound. 

CONCLUSION 

Systems without the interaction of various sub- 
stances represent generalized linear systems (systems 
of monomolecular reactions). In these systems, the 
distance P(u(l)(t) - ac2’(r)) between trajectories a(” 

(t) and ac2’(t) in a norm [Ix 11 = Y(x) = 5 lxil does 
i=, 

not increase with time. If the reaction mechanism 
graph is orientally bound, this distance tends to 0 and t 
+ co, the trajectories draw closer to each other. This is 
valid for systems without interaction between the 
various substances both in fixed and in labile external 
conditions. In constant external conditions (kinetic 
equations are autonomous) there exists a single, as- 
ymptotically stable steady state in each invariant 

simplex 9 = a i ai = c, ai > 0 
11 1 i=l 

A distinct feature of these systems is the existence of 
a norm in which the trajectories draw closer to each 
other. There is no such norm in closed systems of a 
general form. Only the existence of Lyapunov’s func- 
tion is a valid statement for them. At present, criteria of 
uniqueness and stability of the steady state are known 
which are based on the study of the structure of the 
reaction mechanism graph (Clark, 1980; Ivanova, 
1979; Ivanova and Tarnopol’skii, 1979). However, it 
remains unclear whether there are such norms in other 
types of reaction mechanisms. This is particularly 
important when studying reactions in labile external 
conditions. 

Chemical systems with nontrival dynamics have 
recently received great attention. In particular, reac- 
tions with a multiplicity of steady states (see, for 
example, Bykov and Yablonskii, 1981b; Bykov et al., 
1981; Yablonskii et al., 1984) and self-oscillations (for 
the corresponding mathematical models, see Bykov 
et al., 1978, 1979b; Bykov and Yablonskii, 1981a; 
Ivanova et ul., 1978; Yablonskii et al., 1984) have been 
found in catalysis. Anomalously slow relaxations are 
also possible (see Elokhin et al., 1980; Yablonskii et al., 
1984; for the mathematical theory, see Gorban’ and 
Cheresiz, 1981; Chap. 3 in Yablonskii et al., 1984). 
Nontrival dynamics of the lumped system produce 
interesting effects in the distributed systems “kinetics 
+ diffusion” (Aris, 1975; Pismen, 1980; Gorban’ et al., 
1980). The results obtained in this work prove that the 
steps of the interaction between various substances are 
necessary for the appearance of such interesting 
phenomena. 

H 
-J(a) 
I( 
_Y 

mi 
Ni 
N 
N: 
ni 
P 
R 
Y 

T 
Tc 
IJ 
Ui 
V 
l- 
w, 
w: cc. t) 
W,+ 
WS- 
W,* 
<XlY> 

I’? X 

NOTATION 
symbols of substances 
= mici, i = 1, 2, . . n 
= da,/dt 
vector with components ai 
concentrations of Ai 
= dc,/dt 
vector of concentrations 
equilibrium concentration 
specific partial heat capacity 
thermodynamic Lyapunov’s function 
dG/dt 
vector with components Ssi = mi Ysi. S 

= 1, 2, ., s 
enthalpy 
Jacobian matrix 
matrix of linear approximation 
function defined by eq. (13) 
molecular weights of Aj 
amounts of substances Ai 
vector with coordinates Ni 
equilibrium Ni 
= dN/dt 
pressure 
universal gas constant 
invariant simplex 
time 
temperature 
equilibrium temperature 
inner energy 
energy of the normal state of Ai 
volume of the system 
equilibrium volume 
rate of s-th reaction 
certain positive function in eq. (15) 
rate of direct s-th reaction 
rate of reverse s-th reaction 
function denoted by eq. (27) 
scalar product defined by (25) 
norm of the vector x 
module of the vector x 

Greek letters 
a, B stoichiometric coefficients 
YS stoichiometric vector of the s-th reaction 
Y.i = Bsi - %i 
6, Kroneker’s symbol 
Si arbitrary constant in eqs (22) (23) and (24) 
b(e) arbitrary positive function in eq. (34) 
A,(r) little function 
A(t) vector function (&(t )) 
Pi chemical potential of substance A, divided by 

RT 
P vector (pi) 
T time increment 
& little value 
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