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A model of autooscillations in association reactions 
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INTRODUCTION 

The association phenomenon is the generation of complexes 
A, (dimers), A, (trimers), etc. from substance A, in a simple 
case. The generation of these complexes is characteristic of 
liquids and adsorbed substances on a solid surface. It is also 
possible for a gas phase (Vukalovich and Novikov, 1948). 

The aim of this paper is to show that association reactions 
can result in the appearance of autooscillations in nonlinear 
systems. The nonlinearity can be understood in two ways: 
(a) as substance exchange with the exteriority which is not in 
the thermodynamic equilibrium state; (b) as the existence of 
reactions in a system which tend comparably slowly to their 
equilibrium. In case (a), autooscillations and other phenom- 
ena (e.g. dissipative structures) can be observed for an 
indefinitely tong period of time (if they exist). In case (b), the 
“rate constants” of the simple reaction mechanisms con- 
sidered below are the effective constants depending on the 
concentrations of other substances. These effective constants 
vary in time. Therefore, some time after the beginning of the 
reaction all the exotic effects (autooscillations, dissipative 
structures, etc.) disappear; they are possible only on the way to 
equilibrium. 

As in our previous work devoted to bifurcations (Bykov et 
al., 1976, 1981; Bykov and Yablonskii, 1981a; Yablonskii et 
al., 1983, 1984), autooscillations (Bykov et al., 1978, 1979a, b; 
Bykov and Yablonskii, 198 1 b), slow relaxations (Gorban’ and 
Cheresiz, 1981; Bykov et al., 1982; Gorban’, 1984; Yablonskii 
et al., 1984) and dissipative structures (Gorban’ et al., 1980; 
Bykov er al., 1983), we will seek the simplest reaction scheme 
presenting the effect of interest to us. 

SCHEME AND MODEL 
Let us consider the following simple association reaction 

scheme: 

(1) A * A* 

(2) A + 2A* + 3A* (1) 

(3) A,+A* * A, 

where A, A, and A, are the monomer, dimer and trimer, 
respectively. A* is an excited (or active) monomer form. 
Mechanism (1) is similar to the reaction scheme of the simplest 
autocatalytic oscillator proposed in Bykov and Yablonskii 
(1981a,b). The main distinction consists in the nature of the 
third stage. It should be noted that stage (3) of mechanism (1) 
may be interpreted as a “buffer” reaction. 

Scheme (1) is related to two linear conservation laws: 

A, + A, = const, (2) 
A*+A+2A,+3A, =const,. (3) 

We take const, = 1, cons& = afa < 1). The nonstationary 
kinetic model of scheme (1) is of the form 

k= -kk,A+k_,A*+k2AA**=P(A,A,) (4) 
A, = k,A,A*-km,A, = Q(A,A,) (5) 

where A and A, are the concentrations of substances A and 
A,, respectively, and the values of A* and A, are determined 
from eqs (2) and (3), i.e. 

A- = l-2a--A-A, (6) 
A, =a-A,. (7) 

It should be noted that scheme (1) may be considered as a 
part of certain detailed association reaction mechanism. It 
does not contain the separate stage of a dimer generation 
looking like A +A* P A,. Henceforth, even this simple 
scheme allows us to describe the autooscillations. Hence, if 
one needs to consider a more realistic transformation scheme, 
mechanism (1) should be used as a basic one. 

STEADY STATES 

We will seek the single and nonstable steady state of system 
(4)-(7), as we have done in Bykov and Yablonskii (198 la, b). 
This steady state will guarantee the existence of autooscil- 
lations. The (4&(7) steady states are determined as the 
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solutions of the system of two algebraic equations 

P(A, A3) = 0 (8) 

Q(AA,)=O. (9) 

It is convenient to rewrite eqs (8) and (9) in the form 

A,= 1-22a-A*-K-,A*/(K,+A*2)=f(A*) (10) 

A, = A*/(K_3 +A*) = g(A*) (11) 
where K _ 1 = k-,/k,, K, = k,/k,, K_, = k-,/k,. Oneczm 
take k, = 1 without any generalization limit. The steady states 
are the intersection points of the curvesf( A*) and g (A*) (see 
Fig. 1). We will seek the conditions of uniqueness of the 
intersection. For example, let us take the inflexion point A* of 
the functionf(A*) to be the steady state and the inequalityf 
< g’ to hold true, i.e. 

f”(A*) = 0 (12) 

I(‘%*) = g(A*) (13) 
f(A*) < g’(A*). (14) 

A* = m according to eq. (12). Equality (13) means that 

a = f(1 +~K_,,K,)-’ (15) 

if one takes for simplicity 

K_, = m. (16) 

Inequahty (14) can be reduced to the form K-,/K, c 8.8 at 
a = 0.1. Conditions (12k(14) guarantee the steady state A* 
uniqueness. In addition, we take f (A*) > 0, so that the 
situation shown in Fig. 1 should exist. 

The last inequality means that K_ ,/K, 3r 8. Finally, 

8 < K-,/K, < 8.8. (17) 

AUTOOSCILLATIONS 

The stability of the steady state is determined by the roots of 
the characteristic equation 

,X2-cr1+A =0 (18) 

where A = allazz--iza2i, o = ait+aZ2, aij are Jacobi 
matrix elements of the system (8), (9) calculated in the related 
steady state. If A < 0, then the steady state is an unstable one. 
If A > 0, then the type of steady state is determined by a 0 sign; 

Fig. 1. 

namely, the steady state is stable for e < 0, but this former is 
unstable for 0 > 0. CJ may be presented as 

6= a,, -ksAA*-k_3. 

where a,, does not depend on k, and k_,. Consequently, 
the steady state is unstable for A > 0 and sufficiently small 
k k _ 3. Furthermore, one can easily see that sign 
21 sign (g’ -f’) for the steady state, i.e. the steady state is a 
single one iff’ < g’ and its stability is determined by the cr 
sign. 

The steady state A * is unique, if eqs (15) and (16) hold true. 
This steady state wiil be unstable for sufficiently small k,, k _ s 
(for the situation presented in Fig. 1). Particularly, the model 
(4)-(7) calculations performed for the parameter values 
01 = 0.1, k, = 0.02048, km, = 8.1 k,, k, = 1, k, = 10m4, 
k _ 3 = 0.2479 k, show that the steady state corresponding to 
eqs (10) and (11) is the unstable one and all the solutions A(t), 
A,(t) on the phase plane (A, A,) tend to some limit cycle. The 
oscillation amplitude can be evaluated a priori from analysis 
of the graph in Fig. 1. The autooscillations are organized in 
such a manner that they exist in the dotted line neighbour- 
hood shown in Fig. 1. The bchaviour of solutions A(t) and 
A,(t) looks like the relaxation osciIlations for sufficiently 
small k,, k _ 3 Two types of motion are distinguished during 
the period: a fast one and a slow one. The former corresponds 
to the transition from one monotonic branch off(A*) to the 
other; the latter corresponds to the slow variation of the 
solution along these branches. 

CONCLUSION 
Scheme (1) presented above can serve as the simplest 

autooscillation model in the complex-generation reaction. 
More detailed reaction schemes allowing the autooscillation 
percolation regimes are able to contain scheme (1) as a 
constituent part, or to approximate separate stages of (1). For 
example, the autocatalytic stage (2) may be approximated by 
two stages, 2A* * AZ, A + Af -+ 3A*, without any auto- 
catalysis. In the future, we hope to provide a more detailed 
analysis of the autooscillation model separately. 

We note one more simple but, we believe, very interesting 
effect which may appear in the association reactions. Let the 
system be closed and be in a thermodynamic equilibrium 
state. Then there are no autooscillations, on the average, over 
the macroscopic volume, although local autooscillations are 
possible. Their phase cp may be considered as a random 
function of a point. Generally speaking, the correlation radius 
of 40 is a microscopic value. However, it may be large enough 
for the autooscillations to be detected by local measurements. 
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Greek letters 
a. positive constant 

Z 
phase of local oscillations 
root of eq. (18) 

0, A coefficients of eq. (18) 
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Accuracy of chromatographic moments-effect of peak treatment and 
approximations 

(Received 7 April 1986, accepted for publication 29 August 1986) 

INTRODUCTION 
The chromatographic technique is extensively used for ob- 
taining parameters describing processes taking place in 
columns packed with solid adsorbents or liquids supported 
on solids. Quite popular is the evaluation of adsorption 
characteristics (e.g. adsorption equilibrium constants in 
gas-solid chromatography) or effective diffusivities in pores 
of the solid packing. 

The evaluation of these parameters from the shape of 
chromatographic curves (CC) usually follows one of two 
routes: (1) with minimum number of Cc’s the parameters are 
obtained by fitting theoretical expressions to complete CC in 
the time-domain or (2) with larger number of Cc’s (which are 
easily obtained) corresponding to varying carrier-gas velo- 
cities or packing size, the moments of experimental Cc’s are 
fitted to theoretical expressions. Because of signal noise which 
afr‘ects heavily the CC tail only the first ordinary, ,u;, and 
second central, pcz, moments are usually employed. 

When this moment approach is used it is important to 
know the pro&ion with which the peak moments can be 

obtained via different approximate procedures. Also, because 
the raw response signal is never ideal it is always necessary to 
treat the Cc’s in some way (e.g. by shortening the CC tail 
and/or by taking into account the signal base-line instability 
and noise]. 

The aim of this contribution is to generate theoretical Cc’s 
and compare moments obtained from them in two approxi- 
mate ways with theoretical values and to compare theoretical 
CC moments with values calculated according to the 
definitions 

’ s 

7 

is 

I 
Pr = t”c(L, t) dt c(L, t) dt n=l,2,... (1) 0 0 

s 
’ (t - fi; )“c(L, t)dt 

is 

I 
P. = c(L, t)dt n = 2,3, . . (2) 0 0 
from CC’s obtained by defining an uncertainty band of 
different width around the base-line. This uncertainty band 
takes into account the base-line noise as well as shortening of 
the CC tail. The main attention is concentrated on second 


